首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   0篇
  国内免费   1篇
安全科学   1篇
废物处理   3篇
环保管理   2篇
综合类   18篇
基础理论   11篇
污染及防治   19篇
评价与监测   8篇
社会与环境   9篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1991年   1篇
  1989年   1篇
  1972年   1篇
  1964年   1篇
  1963年   2篇
  1962年   2篇
  1960年   1篇
  1959年   2篇
  1958年   2篇
  1956年   1篇
  1955年   3篇
排序方式: 共有71条查询结果,搜索用时 750 毫秒
61.
62.
Isoxaflutole is a new pre-emergence corn herbicide that undergoes rapid conversion to a diketonitrile derivative (DKN) in soils. Sorption-desorption studies were conducted in five different soils varying in physical and chemical properties. A batch equilibration technique was used with total initial aqueous solution concentrations of DKN at 0.25, 0.75, 2.0, 8.0, 25, 75, 150, and 250 mg l(-1). After the sorption process, two subsequent desorptions were conducted with an equilibration period of 7 days. A high correlation existed between the desorption coefficient, K(Fd) and the organic matter content of soils (r(2)=0.844 for the first desorption and r(2)=0.861 for the second desorption), while the clay content did not greatly influence the desorption of DKN. Although the sorption of DKN was generally reversible, a sorption-desorption hysteresis was apparent in all soils. The site energy distribution curves emphasized the fact that DKN binds tightly to soils with higher organic matter content and greater proportion of DKN was retained by those soils  相似文献   
63.
The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind, precipitation, weather patterns, farming, and water logging, resulting in their diverse chemical compositions and the abundant observation of carbonaceous species. Particles containing C and P were more abundant in the Dhapa samples than in the countryside soil sample, suggesting that MSW-contaminated soils are more fertile. However, the levels of particles containing potentially toxic heavy metals such as Cr, Mn, Ni, Cu, Zn, and/or Pb in the Dhapa samples were significant, corroborated by their high bulk concentration levels (EDXRF), causing deep concern for the immediate environment and contamination of the food chain through food crops.  相似文献   
64.
65.
Environmental Fluid Mechanics - Lateral gravity currents can play a critical role in the exchange of materials between terrestrial and marine ecosystems. The three-dimensional flow structure and...  相似文献   
66.
Environmental Chemistry Letters - The quantity and quality of leachate generated in a landfill are very important when it comes to waste management. Sanitary landfill is still being considered as...  相似文献   
67.
68.
69.
Nonmethane organic carbon (NMOC) is a measure of total organic carbon except for that from CH4. We recently reported the development of online instrumentation for continuous NMOC monitoring. This instrument, referred to as C-NMOC, uses a microsorbent trap in combination with a gas-sampling valve as the sampling interface. A conventional oxidation/reduction NMOC detector is used for quantitation. In addition to being an online concentrator and an injector, the microtrap serves as a separator that isolates NMOC from H2O, CO, CO2, CH4, and other background gases. Therefore, the C-NMOC is able to handle high concentrations of background gases commonly found in stack emissions and has detection limits in the ppb levels. This paper reports the results of field validation and testing of a C-NMOC analyzer at a coatings facility in the eastern United States. The instrument was able to monitor the process transients in real time, based on which corrective actions could be taken. It demonstrated good accuracy, high precision, and long-term stability.  相似文献   
70.
Journal of Polymers and the Environment - There is a scientific consensus that the use of membranes for water filtration presents itself as a promising research area for removing a wide range of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号